Feb. 24, 2013 ? An international research group led by scientists from the University of Bristol, UK, and the University of Queensland, Australia, has demonstrated a quantum algorithm that performs a true calculation for the first time. Quantum algorithms could one day enable the design of new materials, pharmaceuticals or clean energy devices.
The team implemented the 'phase estimation algorithm' -- a central quantum algorithm which achieves an exponential speedup over all classical algorithms. It lies at the heart of quantum computing and is a key sub-routine of many other important quantum algorithms, such as Shor's factoring algorithm and quantum simulations.
Dr Xiao-Qi Zhou, who led the project, said: "Before our experiment, there had been several demonstrations of quantum algorithms, however, none of them implemented the quantum algorithm without knowing the answer in advance. This is because in the previous demonstrations the quantum circuits were simplified to make it more experimentally feasible. However, this simplification of circuits required knowledge of the answer in advance. Unlike previous demonstrations, we built a full quantum circuit to implement the phase estimation algorithm without any simplification. We don't need to know the answer in advance and it is the first time the answer is truly calculated by a quantum circuit with a quantum algorithm."
Professor Jeremy O'Brien, director of the Centre for Quantum Photonics at the University of Bristol said: "Implementing a full quantum algorithm without knowing the answer in advance is an important step towards practical quantum computing. It paves the way for important applications, including quantum simulations and quantum metrology in the near term, and factoring in the long term."
The research is published in Nature Photonics.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by University of Bristol.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
- Xiao-Qi Zhou, Pruet Kalasuwan, Timothy C. Ralph, Jeremy L. O'Brien. Calculating unknown eigenvalues with a quantum algorithm. Nature Photonics, 2013; DOI: 10.1038/nphoton.2012.360
Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.
Source: http://feeds.sciencedaily.com/~r/sciencedaily/matter_energy/physics/~3/lS3QlmN33kQ/130224142829.htm
pat summit brewers matt cain adastra holocaust remembrance day chesapeake energy dick clark death
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.